1. Overview

The Wudinna District Council recognises its obligation to ensure that, as far as is reasonably practicable that fixtures, fittings and plant are without risks to the health and safety of any person and to manage risks to health and safety associated with plant under its management and control at a workplace.

This procedure aims to:

- Assist with the management of hazards and risks associated with plant in the workplace and eliminate or minimise risks to health or safety through isolation and lock out tag out.
- Comply with legislative requirements related to the use of lockout or isolation devices, danger tags, permit to work systems and other control measures.
- Provide and outline the minimum standards used to prevent unauthorised alterations to or interference with plant.
- Provide and outline the minimum standards so that plant that is not in use is left in a state that does not create a risk to the health or safety of any person.
- Outline the minimum standards for the provision of relevant information and training.

2. Core components

The core components of our Isolation, Lock Out and Tag Out Procedure require that:

- Energy sources are identified.
- Risk assessments which cover the whole maintenance/activity cycle be completed for work requiring isolation, lock out and tag out activities.
- Reasonably practicable controls (in line with the hierarchy of risk control) are identified and implemented where it is not reasonably practicable to eliminate risks.
- Relevant workers have been trained in the Isolation, Lock Out and Tag Out Procedure.
- Monitoring/inspection processes have been identified and are regularly scheduled and conducted.
- Appropriate corrective actions are identified and implemented.
- The isolation, lock out and tag out process is included within the internal audit process.
- Records are maintained and available.

3. Definitions

<table>
<thead>
<tr>
<th>Authorised Person</th>
<th>A nominated person with PCBU approval to issue permits for isolation, lock out, tag out activities.</th>
</tr>
</thead>
</table>
| Competent Person | For the purposes of this procedure, a competent person means: (in addition to the specific requirements set out in the definition contained within the WHS Regulations 2012):
| | (a) For electrical work on energised electrical equipment or energised electrical installations. (other than testing referred to in regulations 150 and 165)—a person registered to undertake the work under the Plumbers, Gas Fitters and Electricians Act 1995;
| | (g) For any other case—a person who has acquired through training, qualification or experience the knowledge and skills to carry out the task. [as defined in the WHS Regulations 2012, p. 31-32]. |
| Danger Tag | Danger tags are used for the duration of the electrical work to warn persons at the workplace. A danger tag does not perform the isolation function. [as defined in the COP: Managing Electrical Risks In The Workplace July 2012, p. 31]. |
Isolation, Lock Out & Tag Out Procedure

<table>
<thead>
<tr>
<th>Version No.</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued:</td>
<td>16 June 2010</td>
</tr>
<tr>
<td>Reviewed:</td>
<td>23 April 2015</td>
</tr>
<tr>
<td>Next Review:</td>
<td>23 April 2017</td>
</tr>
</tbody>
</table>

Electrical equipment

Means any apparatus, appliance, cable, conductor, fitting, insulator, material, meter or wire that:

- (a) Is used for controlling, generating, supplying, transforming or transmitting electricity at a voltage greater than extra-low voltage; or
- (b) Is operated by electricity at a voltage greater than extra-low voltage; or
- (c) Is part of an electrical installation located in an area in which the atmosphere presents a risk to health and safety from fire or explosion; or
- (d) Is, or is part of, an active impressed current cathodic protection system within the meaning of AS 2832.1:2004 (Cathodic protection of metals—Pipes and cables).

Electrical equipment does not include any apparatus, appliance, cable, conductor, fitting, insulator, material, meter or wire that is part of a motor vehicle if:

- (a) The equipment is part of a unit of the vehicle that provides propulsion for the vehicle; or
- (b) The electricity source for the equipment is a unit of the vehicle that provides propulsion for the vehicle.

[as defined by the WHS Regulations, 2012 (144)]

Electrical work

Means:

- (a) Connecting electricity supply wiring to electrical equipment or disconnecting electricity supply wiring from electrical equipment; or
- (b) Installing, removing, adding, testing, replacing, repairing, altering or maintaining electrical equipment or an electrical installation.

[as defined by the WHS Regulations 2012 (146)(1) and subject to the exclusions contained in WHS Regulations 2012, (146)(2)]

Energy source

The different kinds of energy sources include, but are not limited to:

- Electrical (mains)
- Battery or capacitor banks
- Solar panels
- Fuels
- Heat
- Steam
- Fluids or gases under pressure (water, steam or hydraulic oil)
- Stored energy (e.g. compressed springs)
- Gravity
- Radiation.

[as defined in the COP: Managing the Risks of Plant in the Workplace, July 2012, p.30].

Hierarchy of Control

If it is not reasonably practicable for risks to health and safety to be eliminated, risks should be minimised, so far as is reasonably practicable, by doing one or more of the following:

- (a) Substituting (wholly or partly) the hazard giving rise to the risk with something that gives rise to a lesser risk.
- (b) Isolating the hazard from any person exposed to it.
- (c) Implementing engineering controls.

If a risk then remains, the duty holder should minimise the remaining risk, so far as is reasonably practicable, by implementing administrative controls.

If a risk then remains the duty holder should minimise the remaining risk, so far as is reasonably practicable, by ensuring the provision and use of suitable personal protective equipment.
Isolation, Lock Out & Tag Out Procedure

<table>
<thead>
<tr>
<th>Version No.:</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued:</td>
<td>16 June 2010</td>
</tr>
<tr>
<td>Reviewed:</td>
<td>23 April 2015</td>
</tr>
<tr>
<td>Next Review:</td>
<td>23 April 2017</td>
</tr>
</tbody>
</table>

Isolation
The condition where an isolator makes an energy source incapable of being set in motion or releasing its energy.

Isolation Procedure
A set of predetermined steps that should be followed when workers are required to perform tasks such as maintenance, repair, installation and cleaning of plant. Isolation procedures involve the isolation of all forms of potentially hazardous energy so that the plant does not move or start up accidentally. Isolation of plant also ensures that entry to a restricted area is controlled while the specific task is being carried out. The lock-out process is the most effective isolation procedure.

[as defined in the COP: Managing the Risks of Plant in the Workplace, July 2012, p.30].

Isolator
A device that physically prevents the transmission or release of energy.

Job Safety Analysis (JSA)
The systematic breakdown of a job into tasks/steps in order to identify hazards, assess risks and select the best control using the hierarchy of control.

Lock box
To avoid the need for multiple locks on each lockout point, a lock box may be used. Under this system each lockout point is locked by only one lock and the keys to the locks of the plant’s lockout points are placed inside a box which is locked by the individual locks of people working on the same plant.

Lock out
A system or a process designed to control situations where the unexpected energisation, start-up or release of stored energy of plant has the potential to endanger the health and safety of staff or contractors. In these situations, plant shall be:

- Appropriately isolated and any stored energy released.
- Have a personal lock and danger tag applied to the isolating control.

Out of service tag (yellow and black tag)
Out of service or caution tags are used to identify electrical equipment that is not safe to use or fit for purpose.

[as defined in the COP: Managing electrical risks in the workplace July 2012, p. 32].

Note: for Council purposes this definition is taken to include plant.

Plant
Includes:
(a) Any machinery, equipment, appliance, container, implement and tool; and
(b) Any component of any of those things; and
(c) Anything fitted or connected to any of those things.

[as defined in the WHS Act 2012, p.16]

Permit To Work
A formal check to ensure that all elements of a safe system of work are in place before people are allowed to undertake work. It also provides a means of communication between site management, supervisors and persons carrying out the work and makes sure that an authorised person has checked the permit and it is safe to proceed.

PCBU
Person Conduction a Business or Undertaking.

[as defined in the WHS Act 2012(5)]

Personal Danger Tag
Personal danger tags are restricted to persons who will be working on plant.
A personal danger tag on the isolation devices of an item of equipment is a warning that the equipment is in an unsafe condition and that operation of that equipment may endanger the person who attached the tag. All personal danger tags of the disposal type should be destroyed after use.
Isolation, Lock Out & Tag Out Procedure

<table>
<thead>
<tr>
<th>A personal danger tag is not an effective isolation device by itself. A tag only acts as a means of providing information to others at the workplace. A personal danger tag shall be used in conjunction with a personal lock. A personal danger tag shall only be removed by the person whose name is written on the tag. All disposable personal danger tags shall be destroyed after use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal lock</td>
</tr>
<tr>
<td>Safe Work Instruction (SWI)</td>
</tr>
</tbody>
</table>

4. Procedure

4.1. Introduction

4.1.1. The purpose of this procedure is to make sure all energy sources related to plant are made safe so that the unexpected start-up, energisation, or the release of stored energy that could cause injury does not occur.

4.1.2. The Line Manager should make sure that the operator controls associated with plant under their control are:
 a. Identified on the plant so as to indicate their nature, function and direction of operation; and
 b. Located so as to be readily and conveniently operated by each person using the plant; and
 c. Located or guarded to prevent unintentional activation; and
 d. Able to be locked into the "off" position to enable the disconnection of all motive power.

4.1.3. When isolation of plant is required, this procedure should be read in conjunction with the SWI for the task and any existing risk assessments for the particular item of plant.

4.1.4. If access to any item of plant is required for the purpose of maintenance, cleaning or repair, the item of plant should be stopped and one or more of the following controls used:
 a. The use of appropriate tags (Out of Service tag and/or Personal danger tags, as relevant)
 b. Lockout or isolation devices (including personal lock and danger tag)
 c. Permit to work systems
 d. Other control measures (in accordance with the hierarchy of risk control).

4.1.5. If it is not reasonably practicable to carry out cleaning or maintenance while the plant is stopped, operational controls that permit controlled movement of the plant should be fitted and safe systems of work used (e.g. controlled access, buddy systems and higher levels of supervision).

4.1.6. The Line Manager will facilitate an adequate supply of out of service tags, danger tags, personal locks, isolating devices and any other equipment required by this procedure for relevant workers.

4.2. Hazard identification and risk assessment
4.2.1. As part of the hazard identification, risk assessment and risk control process, risk assessments that include isolation requirements are to be completed for plant prior to use or maintenance activities. The risk assessment process should:

a. Be undertaken by a team consisting of a competent person to lead the risk assessment process, workers who are to undertake the activity, a HSR, the Line Manager or supervisor and other stakeholders or experts, where relevant.

b. Cover the entire activity from preparation to work until return to service has occurred.

c. Identify all hazardous energy sources that may potentially re-activate the plant. These may include:
 - Electrical (mains, solar and by generator)
 - Mechanical
 - Hydraulic
 - Pneumatic
 - Potential energy (stored or kinetic)
 - Gravitational
 - Radiation
 - Battery or capacitor banks
 - Solar panels
 - Fluids or gases under pressure (water, air, steam or hydraulic oil).

d. Identify all isolation points in the plant.
 - Manufacturers, suppliers, designers or importers instructions should be referenced during the hazard identification and risk assessment process.
 - If original diagrams of plant installations are not available, new information (e.g. diagrams, photographs etc.) should be sourced or developed by a competent person that show isolation points, switches, valves, energy lines, pipes, power sources and control points as part of the risk assessment process.
 - Emergency stop buttons, lanyards and similar stop devices should not be relied upon on their own as isolation devices, as they will not necessarily achieve isolation.
 - If plant is designed to be operated or attended by more than one person and more than one emergency stop control is fitted, the Line Manager should ensure that the multiple emergency stop controls are of the "stop and lock-off" type so that the plant cannot be restarted after an emergency stop control has been used unless that emergency stop control is reset.

e. Identify all reasonably foreseeable hazards associated with the task. These may include, but not be limited to:
 - Associated equipment that may need to be isolated or locked out to prevent re-activation.
 - A hazardous substance, such as gases, acids, alkalis, solvents, glues or pooled liquids in which a person may drown.
 - Falls
 - Burns
 - Asphyxiation
 - Impact.

f. Identify other permits that may be required for the work to be carried out. These include, but are not limited to, permits for hot work, confined space entry, excavations near buried utility lines, etc. The authorised person shall make sure all permits are issued as required.
4.4. Risk Control

4.4.1. Risks should be eliminated in so far as it is reasonably practicable.

4.4.2. Where risks cannot be or it is not reasonably practicable for risks to be eliminated, controls must be selected in accordance with the hierarchy of control, in so far as is reasonably practicable. The risk assessment/JSA must clearly indicate what control measures are to be used.

4.4.3. When required by the risk assessment/JSA process, a Safe Work Instruction (SWI) for the task should be developed. The SWI should include:
 a. The situation under which the isolation procedure is to be implemented.
 b. The sequence by which the plant/machinery/equipment will be shut down.
 c. The means and sequence by which the isolation of energy sources (including stored energy) will be achieved.
 d. The sequence of lock out for isolation points.
 e. The tags to be applied to machinery controls, energy sources and other hazards.
 f. The checks and tests that are to be performed prior to the commencement of work.
 g. The positions and competencies of persons authorised to perform work and issue permits (if required) in relation to isolation and the work to be done.
 h. Any other special requirements.

4.4.4. The controls developed from the identification of hazards in the risk assessment/JSA should be in place before work commences.

4.4.5. Each person involved in the job should sign their acknowledgement of the risk assessment/JSA and controls prior to work commencing.

The following steps outline the general process for isolation, tag out and lock out of plant.

4.4. Out of service tags

4.4.1. Any person who identifies an item of plant which is unsafe and requires removal from service should complete and attach an out of service tag and if applicable, fill in and forward either an incident report, in accordance with the Incident Reporting and Investigation Procedure or a Hazard Report Form in accordance with the Hazard Management Procedure.
 a. The information recorded on each tag should be completed in full; a blank warning tag should never be used.

4.4.2. The tag should be placed in a prominent position on the plant. It should be clearly visible from the position where plant can be started. The tag should be secured so that it is not easily dislodged.

4.4.3. Out of service tags should not be relied upon to provide personal protection and are only to be used as a means of providing information to others at the workplace.

4.4.4. The person who tagged out the item should make sure that the Line Manager and/or supervisor and all other relevant persons who use the plant are aware that it has been removed from service as soon as possible.
 a. When reasonably practicable, plant that is out of service should be moved from the usual work environment to one of restricted access and or quarantined.

4.4.5. The out of service tag may only be removed by an authorised person once the item of plant to which it relates is fit for return to service or disposal is to occur.
Isolation, Lock Out & Tag Out Procedure

4.5. Communication

4.5.1. The person responsible for plant maintenance, cleaning or repair should notify all relevant persons as to work schedule and duration of isolation, prior to work commencing.

4.6. Isolation, lock out, tag out

4.6.1. The competent person carrying out plant maintenance, cleaning or repair should:
 a. Shut the plant down using the steps established in the risk assessment / JSA or safe work instruction.
 b. Restrict access to the area while the specific task is being carried out.
 c. When required by the risk assessment/JSA, obtain a permit to work from an authorised person.

4.6.2. Identify and isolate all energy sources, other hazards and isolation points
 a. The competent person should undertake or coordinate the isolation of all energy sources and other hazards with any other person involved in the task.
 b. An effective isolating device should be used that is suitable for the specific type of isolation required.
 • This may include switches with built in locks, and lock out circuit breakers, fuses and valves, chains, hasps and safety padlocks
 • For some plant, isolation may only require removal of the power cord from electricity supply, removal of the keys from the ignition of a vehicle or removal of air hoses and the appropriate tag placed over this power source. This is allowable as the only form of isolation if the risk assessment permits it (e.g. if the repairer is in total control of the plant and the work environment and the plant cannot be restarted by any other means, or by any other person.)
 • Except in the case of equipment connected via a plug and socket, a competent person such as an electrician should isolate and disconnect the electricity supply to an item of electrical plant (not just the control circuit) so that equipment cannot be inadvertently energized via another source or control system.

4.6.3. De-energise or control all stored energies
 a. The competent person should take steps that are necessary to guard against energy left in the plant after it has been isolated, which may include any or all of the following:
 • Inspect the plant to make sure all parts have stopped moving
 • Install ground wires
 • Relieve trapped pressure
 • Release the tension on springs, or block the movement of spring-driven parts
 • Block or brace parts that could fall because of gravity
 • Block parts in hydraulic and pneumatic systems that could move from the loss of pressure
 • Bleed the lines and leave vent valves open
 • Drain process piping systems and close valves to prevent the flow of hazardous material
 • If a line should be blocked where there is no valve, use a blank flange
 • Purge reactor tanks and process lines
 • Dissipate extreme cold or heat, and or provide protective clothing and or equipment.
 • If stored energy can re-accumulate, make sure monitoring occurs to maintain below hazardous levels.
4.6.4. Lock out all isolation points and tag out machinery controls, energy sources and other hazards.
 a. One person, one lock
 • If more than one person is working on the same plant, each person should attach their
 individual lock to prevent the isolator being opened before all locks have been
 removed or opened.
 • If two or more people are working on plant that is isolated through several lockout
 points, each person should attach a lock and tag to each lockout point or a lock box
 should be used.
 b. One lock, one key
 • Each person working on the plant should have their individual lock, key and tag. There
 should be no duplicate key available for any lock, except a master or duplicate key for
 use in an emergency, that is secured and not readily available.
 • During maintenance, cleaning or repair of the plant, the one key to each person’s lock
 should be held only by that individual person, who is responsible for both locking and
 unlocking the lockout device.
 c. Multiple energy sources
 • If more than one energy source or hazard has to be locked out to enable safe
 shutdown of the plant, each energy source should be locked out by each person
 working on the plant (via the use of multi-lock hasps etc.), or each energy source may
 be locked out by a single lock, the single key to each lock being place in a lock out box
 and that lock out box being secured by a multi-lock hasp and a personal lock for each
 individual person working on the plant.
 d. A personal danger tag should be attached to an isolator in a visible position whenever the
 isolator is used to lock out an energy source. It should accompany each lock used in an
 isolation procedure and identify the person who put the tag and lock in place, the time and
 date this occurred and the item of plant being isolated.
 • Out of service tags and personal danger tags should not be used together. An out of
 service tag should be removed when a personal danger tag is added and vice versa.
 e. The person doing the work should personally fasten their personal danger tag on all lockout
 devices involved in the isolation procedure. If more than one person is involved in the work,
 each person should attach their own lock and personal danger tag to the lockout device.

4.6.5. Test isolation devices
 a. The competent person should test all isolated energy sources first with appropriate
 instruments and then by trying to activate the plant, before any person attempts to start
 work on the plant.
 b. Work on the plant cannot begin until tests have confirmed it is safe to do so.

4.6.6. Undertake repairs or maintenance
 a. As each competent person completes their task, they should remove their individual
 personal lock(s) and danger tag(s). No person should remove another person’s personal
 danger tag.
 b. If work is not completed by the end of a working shift and the plant is required to remain
 isolated, arrangements should be made for out of service tags to be placed on each isolating
 point before personal danger tags are removed.
c. If work on the plant is to continue during the next shift there should be a hand over by the shift leaving the site to those taking over the work. The hand over should include the status of the work and the removal and replacement of individual danger tags and locks.

d. Any guarding that may have been removed should be replaced and secured before energy is restored.

e. When work is complete and all locks and tags have been removed, the authorised person should make sure that all persons are clear of the plant before energy is restored and the machine is restarted and returned to service.

f. The authorised person should notify the person responsible for the plant that work has been completed and the plant has been restored to an operational condition.

4.6.7. Failure to remove locks and tags

a. Where a person has failed to remove a personal lock and danger tag, the authorised person can request the person to return to the worksite and remove the lock and tag so that the plant can be returned to normal operation.

b. If the authorised person is unable to contact the owner of the potentially redundant lock and tag, they should contact the Line Manager or other manager and where available, a HSR. They should:
 - Determine the method of isolation in use and the reason for its implementation.
 - Undertake a risk assessment relating to the removal of the isolation device(s).
 - Remove the lock and tag and re-energise the plant or equipment if safe to do so, otherwise keep the plant tagged as out of service.
 - Monitor and review the operational safety of the plant once re-energised.

c. An incident report should be completed and contain a full record of the above activities, including the name of the owner or person who did not remove their lock and tag.

d. Failure to remove a personal lock and tag may result in initiating performance management procedures or breach of contract discussions being instigated.

4.6.8. Isolation not practical

a. There may be plant that can only be cleaned, maintained or repaired by moving components slowly under power. If the need for plant to be operated during cleaning or maintenance cannot be eliminated:
 - The plant should be fitted with controls that allow safe controlled movement
 - The operational controls must not be able to be operated by any person other than the person who is carrying out the maintenance or cleaning or, if it must be operated by someone else, that person must be authorised to operate the plant for that purpose.
 - The operational controls must allow operation of the plant in such a way that any risk associated with the activities of the person(s) carrying out the maintenance or cleaning are eliminated so far as is reasonably practicable, or if it is not reasonably practicable to eliminate the risk, it is minimised so far as is reasonably practicable
 - A risk assessment for the task shall be undertaken by a competent person in consultation with workers.
 - Safe work instructions should be developed and implemented from risk assessments and or JSAs that eliminate or minimise the risk so far as is reasonably practicable.
4.7. Monitoring and evaluation

4.7.1. The Line Manager or delegate should inform all relevant persons about the control measures selected or corrective actions that have been implemented for plant safety. Department meeting minutes and/or JSAs should demonstrate that this has occurred.

4.7.2. A HSR may request a review of a control measure if they reasonably believe that the control measure has not been adequately reviewed.

a. The circumstances in which a request for review can be made include if:
 • The control measure is not effective in controlling the risk it was implemented to control.
 • A change occurs at the workplace that could present a new or different WHS risk that the control measure may not effectively control.
 • A new relevant hazard or risk is identified.
 • The results of consultation indicate a review is necessary

b. The HSR may only request this review if the above circumstances affect or may affect the health and safety of a member of their own work group.

c. The HSR should discuss the issue with their Line Manager and explain their reasons for the request.

d. The Line Manager should recommence the risk assessment process as a result of such a request in accordance with the Hazard Management Procedure.

4.7.3. The Line Manager should make sure that periodic inspections of isolation, lock out and tag out activities take place to assess compliance with documented procedures. The inspection process should include an assessment of conformance with identified controls in an active work situation.

4.7.4. Any corrective or preventative actions identified should be managed in accordance with the Corrective and Preventative Action Procedure.

4.7.5. The WHS Committee should review hazard and incident statistics, audit results, legislative changes and other input information relating to the Isolation, Lock Out and Tag Out Procedure and direct action when required. Minutes should record outcomes of discussion and actions undertaken.

4.7.6. The Isolation, Lock Out and Tag Out Procedure should be subject to internal audit and the audit findings should be reported as part of the ongoing management review process.

4.7.7. The WHS Committee should develop in consultation the setting, monitoring and review of objectives, targets and performance indicators for isolation, lock out and tag out, as relevant.

5. Training

5.1. The Wudinna District Council Training Needs Analysis should identify the training needs and core competencies required for plant isolation, lock out and tag out.

5.2. Workers and contractors should have the Isolation, Lock Out and Tag Out Procedure explained to them during the induction process.

5.3. Persons undertaking risk assessments for the isolation, lock and tag out of plant should have specific training that includes legislative requirements for plant.

5.4. Authorised persons who are required to isolate, lock and tag out or operate plant during maintenance or cleaning should be competent in the tasks required for the plant they are to install, commission, maintain, operate, clean or repair.
5.5. Any person required to carry out electrical work must be licensed under the *Plumbers, Gas Fitters and Electricians* Act 2010, that Act.

5.5.1. Any person required to carry out work involving a danger of accidental direct contact with exposed live conductors or exposed live parts of electrical equipment should be competent and qualified to carry out the work as prescribed by the *Electricity* (General) Regulations 1997. A registered (and where relevant approved) training organisation should deliver any legislatively mandated training.

5.6. Workers who are required to undertake any task or activity under this procedure should receive specific training for all aspects of the task or activity and receive appropriate supervision.

5.7. Contractors should be made aware of the isolation, lock out and tag out requirements during the contractor tendering process and should include their control processes when isolation, lock out or tag out is required for a contracted job, as part of the contract tendering process.

6. Records

The following records should be maintained:

6.1. Plant risk assessments

6.2. SWIs, JSAs or SOPs

6.3. Purchase or hire documentation, including operation manuals

6.4. Training records, licences and other competency records

6.5. Plant inspection, testing and maintenance records

6.6. Permits to work

6.7. Plant registration and certification records.

All records should be retained in line with the current version of GDS20.

7. Responsibilities

7.1. The Chief Executive Officer is accountable, so far as is reasonably practicable, for:

7.1.1. Meeting its legislative responsibilities for isolation, lock out and tag out.

7.1.2. Consulting with other PCBU’s, so far as is reasonably practicable, if their duty of care overlaps.

7.1.3. Approving any reasonably practicable budgetary expenditure necessary for the management of isolation, lock out and tag out.

7.1.4. Setting objectives, targets and performance indicators for the isolation, lock and tag out as relevant.

7.1.5. Checking that Line Managers and supervisors have been provided with training to enable them to understand and

a. Apply the requirements of the plant legislation and relevant Australian Standards for the plant under their control.

b. Provide adequate supervision to the workers under their control.

b. Conform with the requirements of this procedure.

7.1.6. Checking that authorised persons have been provided with training to achieve the competency required to apply Council procedures to the tasks and activities they undertake.
7.1.7. Checking that all reasonably foreseeable energy hazards are identified, assessed, controlled and monitored when elimination is not practicable.

7.1.8. Monitoring the Hazard / Risk Register and CAPA Register and enforcing close out of items when required.

7.1.9. Reviewing the effectiveness of the isolation, lock out and tag out process.

7.1.10. Checking that the management review process includes isolation, lock out and tag out.

7.2. Line Managers and supervisors are accountable for:

7.2.1. Checking that authorised persons have been provided with training to make sure that they have the competency to apply required procedures to the tasks they undertake.

7.2.2. Undertaking risk assessments in consultation with workers, as required and implementing controls from the hierarchy of control, monitoring and reviewing for effectiveness.

7.2.3. Checking relevant permits for the work have been issued.

7.2.4. Coordinating, supervising, undertaking, monitoring and reviewing isolation, lock out and tag out activities to achieve conformance with this procedure.

7.2.5. Checking that all reasonably foreseeable hazards associated with the isolation, lock out and tag out of plant within their department are identified, assessed, controlled and recorded on the Hazard / Risk Register, in consultation with workers or their representatives.

7.2.6. Communicating the outcomes of risk assessments within the workgroup and across the organisation as required.

7.2.7. Confirming all affected persons are informed before plant isolation, lock out and tag out occurs and when it has been completed.

7.2.8. Undertaking required inspections of activities to assess conformance with this document.

7.2.9. Implementing any corrective or preventative actions required for the continual improvement of plant safety.

7.2.10. Coordinating, supervising, monitoring and reviewing contractor activities for compliance.

7.2.11. Retaining and maintaining records as required.

7.2.12. Seeking expert advice when a need is identified.

7.2.13. Providing required reports to the WHS Committee and / or management.

7.3. Workers are accountable for:

7.3.1. Following any reasonable instruction and Safe Work Instruction related to plant.

7.3.2. Not using equipment that has been locked out or tagged out of service, or cause those tags to be removed or damaged.

7.3.3. Reporting incidents, hazardous situations or safety problems, immediately to their Line Manager or team leader, in accordance with the Hazard Management Procedure.

7.3.4. Assisting in assessing risk, implementing control measures and evaluating them for effectiveness as required.

7.3.5. Seeking assistance to manage plant hazards when required.

7.4. The WHS Committee is accountable for:
7.4.1. Facilitating co-operation between management and workers in matters relating to plant.

7.4.2. Monitoring the Hazard / Risk Register and referring issues that require management direction or enforcement to the Chief Executive Officer.

7.5. Health and Safety Representatives may:

7.5.1. Facilitate consultation between Line Managers and workers in relation to WHS issues that affect the workgroup that they represent.

7.5.2. Assist in the resolution of WHS issues.

7.5.3. Request a review of a control measure in line with the process for hazard management outlined in the Hazard Management Procedure.

8. Review

8.1. The Isolation, Lock Out and Tag Out Procedure should be reviewed by the WHS Committee in consultation with management, workers or their representatives, every twenty four (24) months or more frequently if legislation or Wudinna District Council needs change. This may include a review of:

8.1.1. Legislative compliance issues.

8.1.2. Audit findings relating to isolation, lock out and tag out.

8.1.3. Incident and hazard reports, claims costs and trends related to isolation, lock out and tag out.

8.1.4. Feedback from Line Managers, workers, contractors or others.

8.1.5. Other relevant information.

8.2. Results of reviews may result in preventative and/or corrective actions being implemented and revision of this document.

9. References

Work Health and Safety Act 2012

Work Health and Safety Regulations 2012

Electricity Act 1996

Electricity (General) Regulations 1997

Electrical Products Act 2000

Electrical Products Regulations 2001 (Repealed)

General Disposal Schedule 20 for Local Government

WorkCoverSA Performance Standards for Self-Insurers

Code of Practice: How to Manage Work Health and Safety Risks

Code of Practice: Worker Representation and Participation Guide

Code of Practice: Managing the Risks of Plant in the Workplace

Code of Practice: Confined Spaces
The following standards are prescribed codes of practice under the Work Health and Safety Regulations 2012 and are relevant to plant:

Australian/New Zealand Standard AS/NZS 1200: Pressure Equipment
Australian Standard AS 1418: Cranes, Hoists and Winches
Australian/New Zealand Standard AS/NZS 1576: Scaffolding (parts 1-4)
Australian Standard AS 1735: Lifts, Escalators and Moving Walks (known as the SAA Lift Code)
Australian Standard AS 1755: Conveyors – Safe Requirements
Australian Standard AS 2030: Gas Cylinders
Australian Standard AS 2550: Cranes, Hoists and Winches – Safe Use
Australian Standard AS 2593: Boilers – Safety Management and Supervision
Australian/New Zealand Standard AS/NZS 3788: Pressure Equipment—In-Service Inspection
Australian Standard AS 4024.3001: Safety of Machinery – Materials and Forming Shearing- Mechanical Power Presses

The following Australian Standards may need to be referenced depending on the nature and hazards of the work being undertaken and the respective work environment. NOTE: this is not an exhaustive list.

Australian Standard AS 1121: Agricultural Tractor Power Take offs (parts 1-4)
Australian Standard AS 1473: Wood processing Machinery
Australian Standard AS 1577: Scaffold Planks
Australian Standard AS 1636.1: Tractors - Roll-over Protective Structures Criteria and Tests- Conventional Tractors
Australian Standard AS 1788: Abrasive Wheels (Parts 1 and 2)
Australian/New Zealand Standard AS/NZS 1891: Industrial Fall Arrest Systems and Devices
Australian/New Zealand Standard AS/NZS 1892: Portable Ladders
Australian Standard AS 1893: Code of Practice for the Guarding and Safe Use of Metal and Paper Cutting Guillotines
Australian/New Zealand Standard AS/NZS 2211: Safety of Laser Products
Australian Standard AS 2294.1: Earthmoving machinery – Protective Structures -General
Australian Standard AS 2397: Safe Use of Lasers in the Building Construction Industry
Australian Standard AS 2971: Serially Produced Pressure Vessels
Australian/New Zealand Standard AS/NZS 3000: Electrical Installations-(known as Australian / New Zealand Wiring Rules)
Australian Standard AS 3920.1: Assurance of Product Quality – Pressure Equipment Manufacture
Australian Standard AS 4343: Pressure Equipment - Hazard Levels
10. Related Documents

Hazard Management Procedure *(Document number 12.3.7.3)*

Plant Procedure *(Document number 12.3.7.3)*

Corrective and Preventative Action procedure *(Document number 12.3.16.5)*

Contractor Management Procedure *(Document number 12.3.25.1)*

Hazardous Work Policy *(Document number 12.3.35)*

Confined Space Procedure *(Document number 12.3.35.1)*

Electrical Safety Procedure *(Document number 12.3.35.3)*

Council Procurement Procedures

SIGNED:

Chief Executive Officer Chairperson, WHS Committee

Date: _____/_____/_____ Date: _____/_____/_____